Large- and very-large-scale motions in channel and boundary-layer flows.

نویسندگان

  • B J Balakumar
  • R J Adrian
چکیده

Large-scale motions (LSMs; having wavelengths up to 2-3 pipe radii) and very-LSMs (having wavelengths more than 3 pipe radii) have been shown to carry more than half of the kinetic energy and Reynolds shear stress in a fully developed pipe flow. Studies using essentially the same methods of measurement and analysis have been extended to channel and zero-pressure-gradient boundary-layer flows to determine whether large structures appear in these canonical wall flows and how their properties compare with that of the pipe flow. The very large scales, especially those of the boundary layer, are shorter than the corresponding scales in the pipe flow, but otherwise share a common behaviour, suggesting that they arise from similar mechanism(s) aside from the modifying influences of the outer geometries. Spectra of the net force due to the Reynolds shear stress in the channel and boundary layer flows are similar to those in the pipe flow. They show that the very-large-scale and main turbulent motions act to decelerate the flow in the region above the maximum of the Reynolds shear stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer

Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...

متن کامل

Very-large-scale motions in rough-bed open-channel flow

Long-duration particle image velocimetry measurements in rough-bed open-channel flows (OCFs) reveal that the pre-multiplied spectra of the streamwise velocity have a bimodal distribution due to the presence of largeand very-large-scale motions (LSMs and VLSMs, respectively). The existence of VLSMs in boundary layers, pipes and closed channels has been acknowledged for some time, but strong supp...

متن کامل

Employing Nonlinear Response History Analysis of ASCE 7-16 on a Benchmark Tall Building

ASCE 7-16 has provided a comprehensive platform for the performance-based design of tall buildings. The core of the procedure is based on nonlinear response history analysis of the structure subjected to recorded or simulated ground motions. This study investigates consistency in the ASCE 7-16 requirements regarding the use of different types of ground motions. For this purpose performance of a...

متن کامل

Simulation of Micro-Channel and Micro-Orifice Flow Using Lattice Boltzmann Method with Langmuir Slip Model

Because of its kinetic nature and computational advantages, the Lattice Boltzmann method (LBM) has been well accepted as a useful tool to simulate micro-scale flows. The slip boundary model plays a crucial role in the accuracy of solutions for micro-channel flow simulations. The most used slip boundary condition is the Maxwell slip model. The results of Maxwell slip model are affected by the ac...

متن کامل

تئوری رژیم و کاربرد آن برای جریان‌های یک‌نواخت و غیر یک‌نواخت

Suitable stable channel design and optimization of river geometry can reduce cost of projects. The regime theory provides the possibility of empirical and semi-empirical investigations of stable channel design in which erosion and sediment transport are in equilibrium. The objective of this research is an investigation and a comparison of the influence of uniform and non-uniform flows on the pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 365 1852  شماره 

صفحات  -

تاریخ انتشار 2007